" NETINT

Quadra Al Python Inference API

Quick Start Guide V4.5

NETINT Technologies Inc.

" NETINT

Table of Contents

Lo LEGAIINOLICES ...ttt sttt sttt sttt sttt s st s ass s asssnssaen 3
DZANNN 15 (ol L1 Tar s Lo + B 4
3. Install the Pythomn INfErence API ..ottt esteenaectraeatraeatraeatsaeasssenssenssenasenasaens 5
Lo APT WOIKLIOW ...ttt sttt ettt sttt sttt sssenssnsens 6
4.1. Creating an Inference ODJECTccccoueviriririerieiieieieereeteeee ettt ettt 6
4.2. Loading Inference Data.........cccoimieriiiiiiiniiniiicicieeeeeeette ettt st 6
4.3. RUNNING INFETENCE ...oviiiiiiiiei ettt sttt 7
4.4, Interpreting OULPULcceouiiiiiiriiiteiciee ettt e b e a et a et 7
5. Example of Python Inference API PrOGIAIIINIILGcccoueceriecerieeerieeeeienieiiniesinieinseaerssstrieassessssenssensssenssserasaens 8
O, REICICIICE ...ttt sttt sttt 9
Page 2 of 9

Rev. V4.5 / August 2023
NETINT © 2023.

" NETINT

1. Legal Notices

Information in this document is provided in connection with NETINT products. No license, express or
implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except
as provided in NETINT’s terms and conditions of sale for such products, NETINT assumes no liability
whatsoever and NETINT disclaims any express or implied warranty, relating to sale and/or use of NETINT
products including liability or warranties relating to fitness for a particular purpose, merchantability, or
infringement of any patent, copyright, or other intellectual property right.

A "Mission Critical Application" is any application in which failure of the NETINT Product could result,
directly or indirectly, in personal injury or death. Should you purchase or use NETINT’s products for any
such mission critical application, you shall indemnify and hold NETINT and its subsidiaries, subcontractors
and affiliates, and the directors, officers, and employees of each, harmless against all claims costs,
damages, and expenses and reasonable attorney’s fees arising out of, directly or indirectly, any claim of
product liability, personal injury, or death arising in any way out of such mission critical application,
whether or not NETINT or its subcontractor was negligent in the design, manufacture, or warning of the
NETINT product or any of its parts.

NETINT may make changes to specifications, technical documentation, and product descriptions at any
time, without notice. The information here is subject to change without notice. Do not finalize a design
with this information. The products described in this document may contain design defects or errors
known as errata which may cause the product to deviate from published specifications.

NETINT™, Codensity™, Quadra™ and the NETINT Logo are trademarks of NETINT Technologies Inc. All
other trademarks or registered trademarks are the property of their respective owners.

© 2023 NETINT Technologies Inc. All rights reserved.

Page 3 of 9
Rev. V4.5 / August 2023
NETINT © 2023.

" NETINT

2. Introduction

NETINT provides high density and efficient video transcoding solutions using the powerful video processing engines
inside the Codensity/Quadra Application-Specific Integrated Circuit (ASIC). We can provide multiple stream
transcoding functions and services, directly to video content providers. We can also provide Transcoding as a
Service (TaaS), which can be integrated into video streaming systems and services. Our functions and services can
be used for highly efficient Video-on-Demand file transcoding, as well as real-time, live video streaming

applications.

The NETINT Al Toolkit offers Python Inference APIs for developing and prototyping deep learning-based Al
applications using Quadra NPU. Quadra Al Python Inference APIs have similar interface to TensorFlow Lite, which
can be used to execute a Network Binary Graph (NBG) model on the Quadra chip to make predictions based on

input data.

Page 4 of 9
Rev. V4.5 / August 2023
NETINT © 2023.

" NETINT

3. Install the Python Inference API

This section describes the Quadra Al Python Inference APl installation.

Prerequisites

e The Quadra card should be installed correctly with Xcoder Codec Library in your host.

e The <NETINT_toolkit> package has already been unpacked at the home directory.

Note: Only the network_wrapper needs to be installed.

Procedure
1. Installing network_wrapper.
cd ~/NETINT_toolkit/network_wrapper
pip3 install ./dist/<netint_inference_api>.tar.gz

2. Changing the permission for the device’s nodes libxcoder.
sudo ./scripts/change_permission.sh

3. Running the demo to verify the Python Inference API installation (Optional).
cd ./scripts

python3 ./demo.py

Page 5 of 9
Rev. V4.5 / August 2023
NETINT © 2023.

" NETINT

4. APl Workflow

The Quadra Al Python Inference API typically follows the following steps.

4.1. Creating an Inference Object

You need to create an interpreter and load the NBG (*.nb) model into memory.

import netint.network

interpreter = netint.network.Interpreter(model_path = model_path, dev_id = device_1id)

Get input and output tensors
input_details = interpreter.get_input_details()

output_details = interpreter.get_output_details()

Loading Inference Data

You need to load inference data and allocate the tensors.

interpreter.set_tensor(@, input_data)

Note: If the model requires multiple inputs, use the set_tensor(Index, Input_data) with the increasing input index to

meet the requirements.

To use Python Inference API, the input data types must be one of the following types:

Data Description

Requires an uint8 type input data.

Uint8 Note:

The input data will be fed into the NBG directly. Thus, the NBG may need to include pre-processing node.

Requires float32 input data.
Float32 Note:

The input data should be processed with pre-processing step.

Page 6 of 9
Rev. V4.5 / August 2023
NETINT © 2023.

" NETINT

Input data for the model generally does not match the input data format expected by the model. For example, you

might need to resize an image or change the image format/ layout to be compatible with the model. The pre-

processing script depends on different model requirements.

4.2. Running Inference

This step involves using the Inference API to execute the model.

interpreter.invoke()

4.3. Interpreting Output

The results of the inference can be obtained by interpreter.get_tensor():
output_list = []
for output_index in range(len(output_details)):
tensor_output = interpreter.get_tensor(output_index)

output_list.append(tensor_output)

The output tensors generated by inference API can be used in the post-processing parts depending on different

scenarios.

Page 7 of 9
Rev. V4.5 / August 2023
NETINT © 2023.

" NETINT

5. Example of Python Inference APl Programming

This section provides an example of using the Quadra Al Python Inference API.

In the demo case, we use yolov4-tiny model to present whole procedures.
import netint.network

img = pre_process(img,mean,scale)

interpreter = netint.network.Interpreter(model_path=network_binary,

dev_id=device_id)

input_details = interpreter.get_input_details()

output_details = interpreter.get_output_details()

input format is image

interpreter.set_tensor(0, img)

interpreter.invoke()

data_list = []

for output_index in range(len(output_details)):
tensor_output = interpreter.get_tensor(output_index)
data_list.append(tensor_output)
np.savetxt('{}/output_{}.tensor'.format(output_dir, output_index),

tensor_output.reshape(-1), fmt='%.6f")

Page 8 of 9
Rev. V4.5 / August 2023
NETINT © 2023.

" NETINT

6. Reference

For detailed information about NETINT Al Toolkit, please refer to the user guide.

The demo code of Quadra Al Python Inference API can be found at:

~/NETINT_toolkit/netint_wrapper/scripts/

A set of model examples of using NETINT Al Toolkit can be found at:

~/NETINT_toolkit/examples/

NETINT © 2023.

Page 9 of 9
Rev. V4.5 / August 2023

	1. Legal Notices
	2. Introduction
	3. Install the Python Inference API
	4. API Workflow
	4.1. Creating an Inference Object
	4.2. Running Inference
	4.3. Interpreting Output

	5. Example of Python Inference API Programming
	6. Reference

